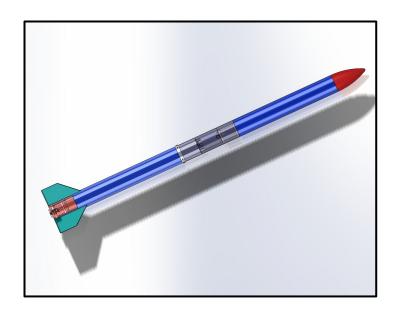


2019 STUDENT LAUNCH COMPETITION Flight Readiness Review March 04, 2019

Address:

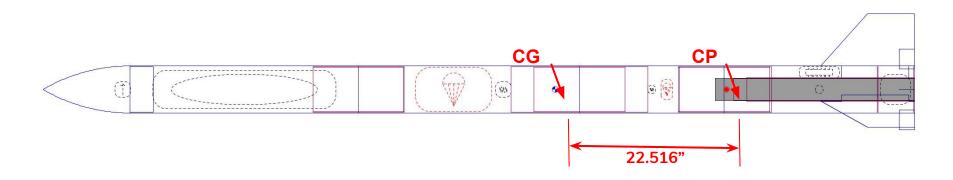
Stony Brook AIAA Chapter 113 Light Engineering Building Stony Brook University Stony Brook, New York 11794-2300

Structures, Aerodynamics, and Propulsion (SAP)


Launch Vehicle Overview

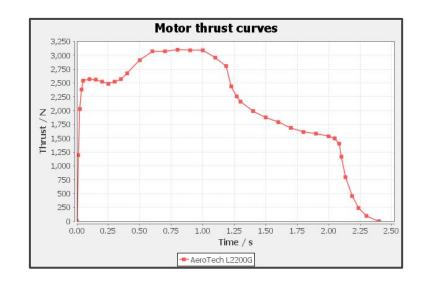
Total Length: 114.42 inOuter Diameter: 6.160 in

• Gross Lift Off Weight: 52.92 lb


• Final Motor Choice: AeroTech L2200G

Thrust/Weight Ratio: 9.35Rail Exit Velocity: 89.69 ft/s

Rocket Flight Stability


	Center of Pressure	Center of Gravity	Stability Margin	
Calculated Result	92.34 inch	65.74 inch	4.32 (on pad)	
Simulated Result	89.742 inch	67.226 inch	3.66 (on pad)	

- Motor selection based on estimated mass of rocket and target apogee
- Final selection: Aerotech L2200G

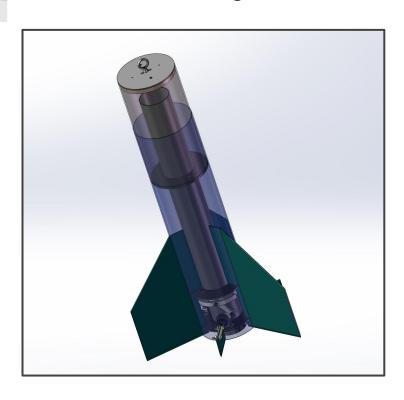
Diameter (mm)	75
Length (in)	26.81
Total Weight (lb)	10.46
Propellant Weight (lb)	5.54
Average Thrust (lb)	494.58
Max Thrust (lb)	700
Impulse (lb.s)	1147
Burn Time (s)	2.3

Mass Statement and Mass Margin

Mass Statement at Liftoff

	Wet Mass	Dry Mass
Forward Section		32.94 lb
Booster Bay	19.98 lb	14.44 lb
Overall Vehicle	52.92 lb	47.38 lb

Mass Ratio (Ratio of wet mass to dry mass): 1.12


Flight Characteristics

Maximum Velocity (ft/s)	632
Maximum Acceleration (ft/s^2)	405
Predicted Apogee (Avg. of wind speeds) (ft)	5004.8
Center of Pressure (in. from nose)	89.742
Center of Gravity (in. from nose)	67.226
Static Stability Margin (on pad)	3.66
Static Stability Margin (at rail exit)	3.71
Rail Size/Type and Length (in)	1515/144 in
Rail Exit Velocity (ft/s)	89.7

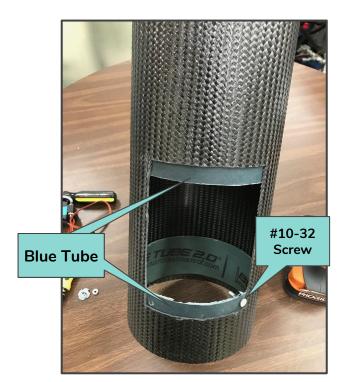
Apogee Predictions

Wind Speed (mph)	0	5	10	15	20
Apogee (ft)	5141	5080	5022	4948	4839

Booster Bay

- Booster with coupler attached, the external length is 25 inches
- The upper portion of the motor mount tube was inserted into the coupler
- A double centering ring holds the upper portion of the motor mount tube and is placed against the bottom of the coupler
- Weight saved by reducing the length of the airframe

Booster Bay

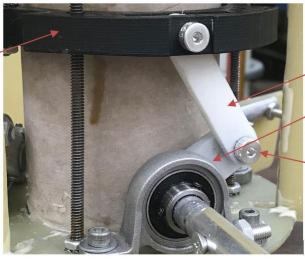

 Had 3 fin slots cut to fit the primary fins and 3 oval slots for the canard fins

Booster Bay

- Window cut into airframe to allow access to ASACU electronics
- Secured with blue tube, t-nuts, and #10-32 machine screws
- Blue tube epoxied to airframe

- Designed to hold the microcontroller and sensors used to drive the ASACU
- Provides a smooth fit inside the airframe
- Mount matches the contour of the airframe to facilitate mounting
- Will be epoxied to airframe





Active Stability and Altitude Control Unit (ASACU)

- Driven by a rack and pinion design rather than a lead screw, allowing for faster changes of the canard fins' angles
- Two screws and an Aluminum rod hold the canard fins in place to ensure their strength during flight

Moving disc that drives three linkage sets

#10 screw holes for clamping the canard -

fins

#6 screw holes connecting wit linkages

ASACU

Linkage 1

Linkage 2

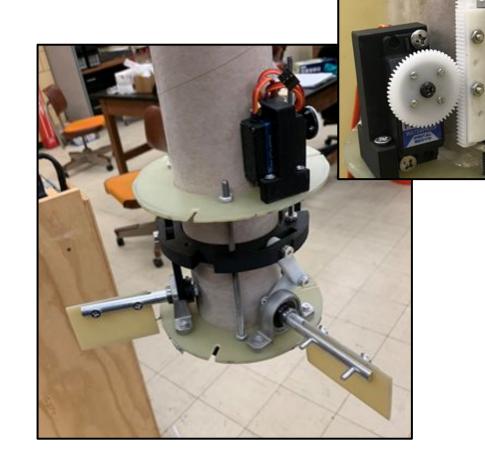
 Canard fin design has been simplified in hopes that it will ease the aerodynamic complications that come with controlling the rocket's roll in-flight

Aluminum shoulder screw as tl

Shoulder screw as the hinge

K001 setscrew bearing with . 12 mm shaft diameter

#10-32 socket head screws


Moving disc that connects three sets of linkages

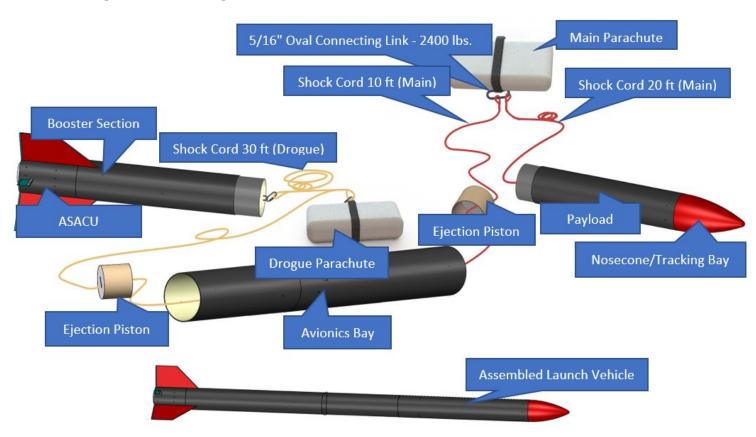
ABS printed linkage set

Setscrews for securing the shaft

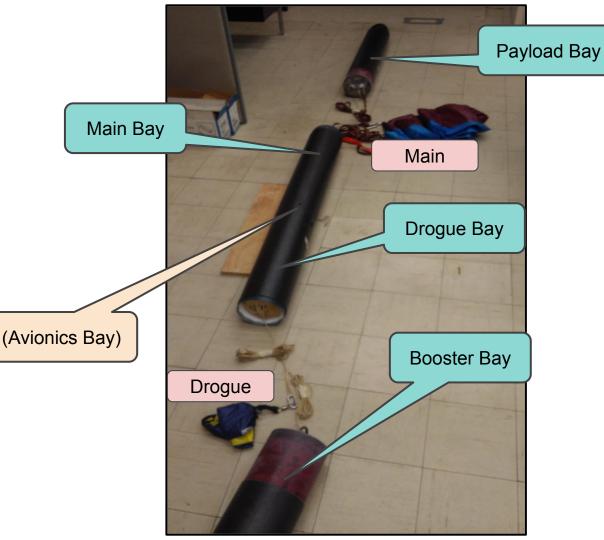
As-Built ASACU

- Mechanism is built and fits well within the airframe (picture taken before assembly of main fins)
- Only the electronics will be accessible via a "window" section cut from the airframe, located above the servo
- This window will have an electronics housing epoxied to it, housing the breadboard, microcontroller, and power supply
- The rack is attached by a threaded rod to the black disc that controls the canard fins. It will be held in place by lock nuts to ensure that it doesn't rotate and displace from its mating gear during flight

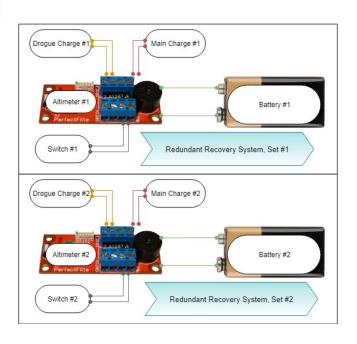
ASACU Integration & Movement

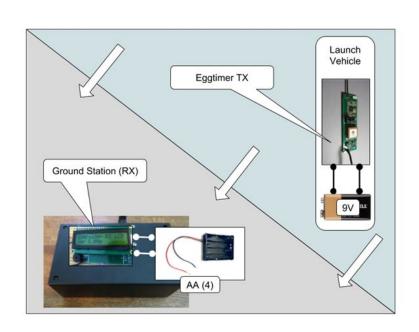


- The ASACU will compare its current state to tabulated values of the ideal trajectory so that it may decide how much drag should be introduced to the system
- CFD simulations were recently ran to compile data on the drag/lift created by the canard fins at certain angles
- SAP is currently working to integrate this data into the code, allowing the unit to foresee the effects of certain angle changes and use that information to determine what maneuver should be made

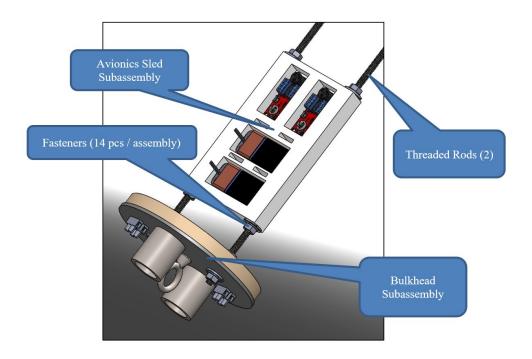

MPU6050 **BMP280** Arduino Uno

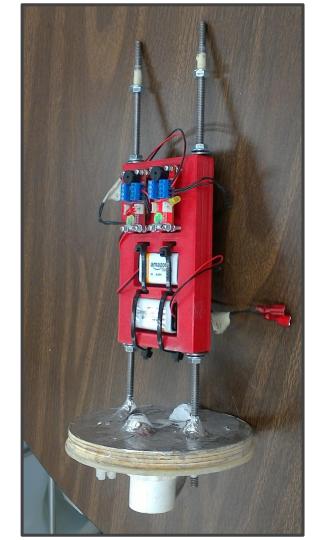
Recovery Subsystem (R&N)

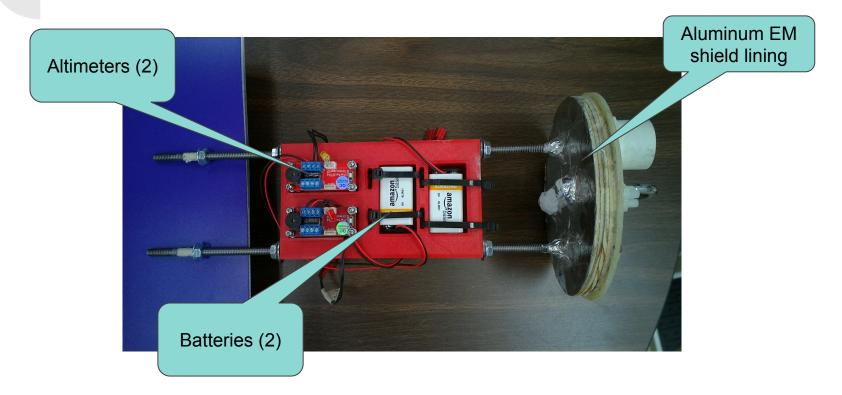

Recovery Subsystem - Overview



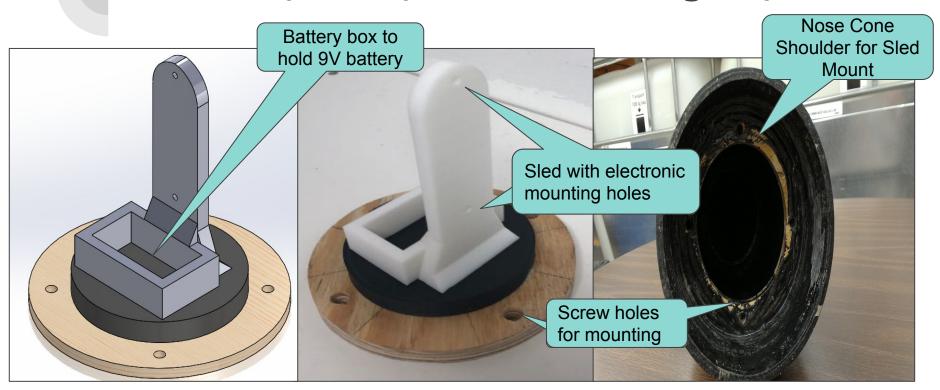
Recovery Subsystem - Avionics

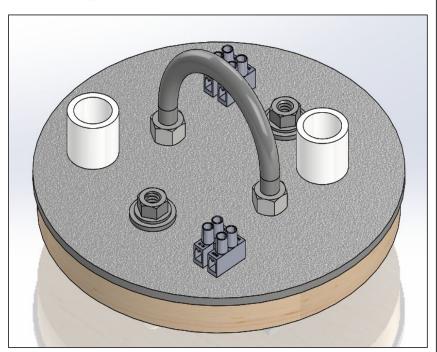


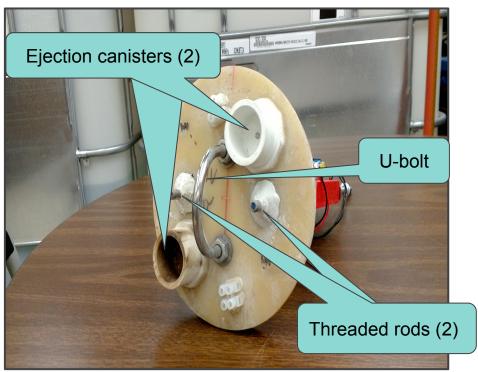

Electronic Redundancy in Altimeter Bay


Tracking Bay Function

Recovery Subsystem




Recovery Subsystem - Avionics



Recovery Subsystem - Tracking Bay

Recovery Subsystem - Bulkheads

Main Parachute

Diamete	r: Shape:	Material:	Drag Coefficient:	Terminal Velocity:
8 [ft]	Toroidal	Ripstop Nylon	2.20	18.4 [ft/s]

Drogue Parachute

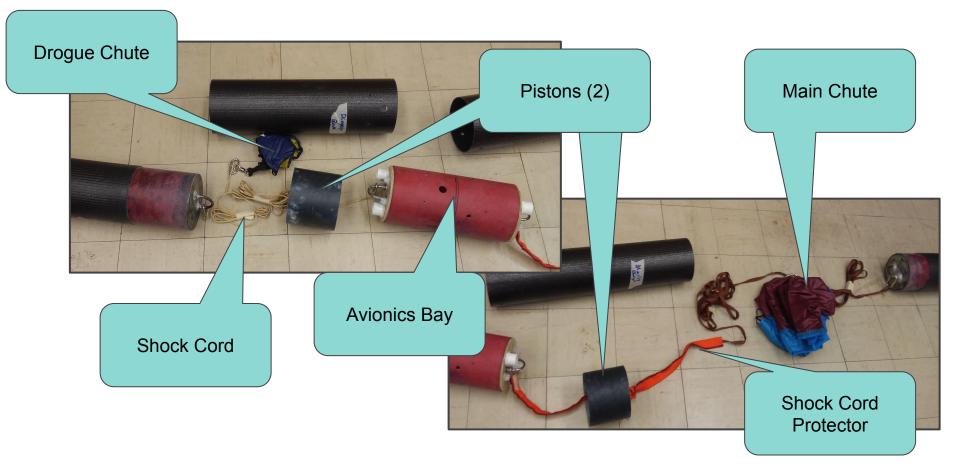
Diameter:	Shape:	Material: Drag Coefficient:		Terminal Velocity:
2 [ft]	Elliptical	Low-Porosity 1.1 Ripstop Nylon	1.6	86.3 [ft/s]

Main Parachute Shock Cords

Thickness:	Length:	Material:	Load Rating:	Safety Factor:	
10 ft		Tubular Nylan	2 200 11-4	4	
0.5 in 20 ft	20 ft	Tubular Nylon	2,200 lbf	4	

Drogue Parachute Shock Cord

Thickness:	Length:	Material:	Load Rating:	Safety Factor:	
7/16 in	30 ft	Tubular Kevlar	5300 lbf	17.5	


Recovery harness type, size, and length the-rocketman.com/kevlar-nylon-shock-cords/

Main Parachute the-rocketman.com/iris-parachutes/

Drogue Parachute the-rocketman.com/chutes.html

Recovery Subsystem - Kinetic Energy

Main Parachute Deployment Kinetic Energy

Section: Joined Booster and Avionics Bay		Forward (Payload)
Kinetic Energy (lb-ft):	2466	1755

Launch Vehicle - Deployment Kinetic Energy

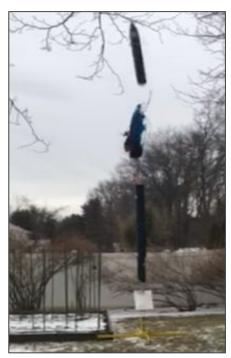
Section:	Section: Booster		Forward (Payload)	
Kinetic Energy [lb-ft]:	74.5	45.7	57.7	

Recovery Subsystem - Descent & Drift

The Launch Vehicle has a calculated descent time of: 81.8 seconds

OpenRocket Predictions

Wind Speed [mph]:	0	5	10	15	20
Drift [ft]:	6.5648	543.5	1086.4	1605.3	2116.9


Analytical Predictions

Wind Speed [mph]:	0	5	10	15	20
Drift [ft]:	0	596	1192	1787	2383

Ground Ejection Test

- Ground ejection tests were performed to verify the amount of black powder in ejection canisters for parachute deployment.
- The tests were very successful, as the initial estimates of black powder were sufficient in separating the rocket segments

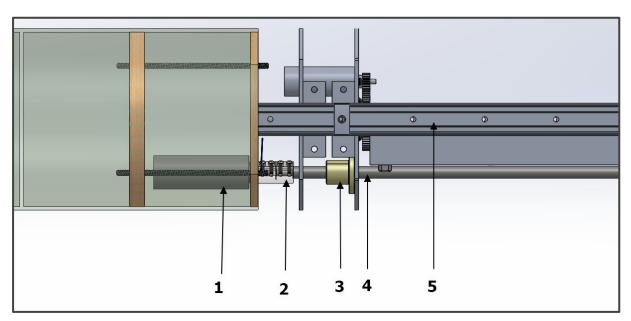
Ground Ejection Test

Recovery System Properties - Energetics						
Ejection System Energetics (ex. Black Powder)		Black Powder [g]				
Energetics Mass - Drogue	Primary	1.25				
Chute (grams)	Backup	1.38				
Energetics Mass - Main	Primary	2.83				
Chute (grams)	Backup	3.11				

Procedure document ensures:

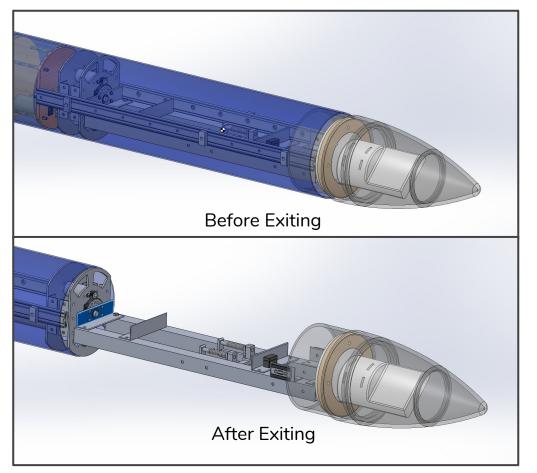
- All necessary components are present
- All electrical connections are verified
- Avionics are armed properly
- Black powder has been measured
 - Ground ejection test
- Vehicle is tethered

		mes that you have all required items to prepare the R&N system. If you haven't yet, ms you have against the item Checklist		
#	√	Step	Completed by	Verified by
RN1		Before beginning to prepare the R&N system, ensure that all nearby devices capable of producing an electromagnetic field are not powered. No interference should be present for the safety of those present at the launch site.		
RN2		Mount electronics to avionics sled (batteries, cables for external connections, transmitters, etc.).		
RN3		Slide the avionics bay into the coupler and fasten it with washers and nuts from CBS.		
RN4	Use ONLY Q	ONLY Quick-Disconnect links that have been tested to connect the altimeters to the switches.		Į.
RN4.1		Switch 1 - Positive		
RN4.2	2 🔲	Switch 1 - Negative		
RN4.3	3 🔲	Switch 2 - Positive		
RN4.4	1 0	Switch 2 - Negative		
RN4.5	5	Main Chute - Charge 1, E-Match		
	4	Main Chute - Charge 2, E-Match		
aun	ch	Drogue Chute - Charge 1, E-Match		
		Drogue Chute - Charge 2, E-Match		
edures		Main Altimeter - Battery		
		Backup Altimeter - Battery		*
RN5		Make sure the altimeter can be turned on using the switch in the installed position. Ensure that the altimeters are programmed correctly (e.g. one with apogee delay, both at the same main deploy altitude, etc.)		
RN6		Fasten the bulkheads to the coupler to close the avionics bay.		
RN7		Add black powder charges and e-match tips to canisters.		
RN7.1	Main Charge 1 Mass:			
RN7.2	Main Charge 2 Mass:	grams		
RN7.3	Drogue Charge 1 Mass:	grams		
100000000	Drogue Charge			
RN7.4	2 Mass:	grams		10
RN7.4		Attach the shock cords to the parachutes and eyebolts.		
0.000.000	2 Mass:			
RN8	2 Mass:	Attach the shock cords to the parachutes and eyebolts. Fold the parachutes and insert them into their respective bays with the pistons, as		
RN8	2 Mass:	Attach the shock cords to the parachutes and eyebolts. Fold the parachutes and insert them into their respective bays with the pistons, as necessary.		

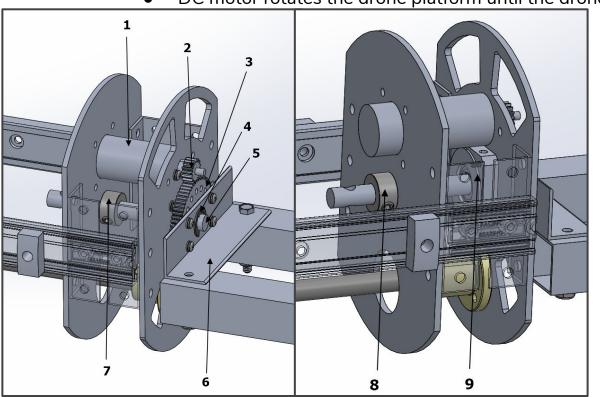

Payload Subsystem (PAY)

Key Changes Since CDR

- Redesigned orientation mechanism for increased reliability.
- Drone size optimized and payload bay airframe shortened to 30 in.

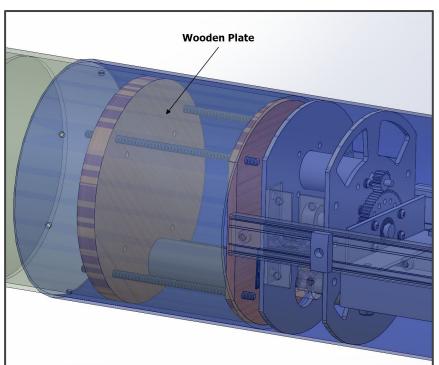

DRES Exit Mechanism

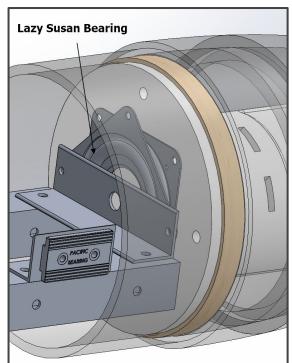
- Drone Re-orientation and Exit Mechanism system (DRES) exits the drone platform using a lead screw connected to a DC motor.
- Linear rails ensure smooth exit.


- 1 DC Motor
- 2 Lead Screw Coupler
- 3 Lead Screw Nut
- 4 Lead Screw
- 5 Linear Rail

DRES Exit Mechanism

DRES Orientation Mechanism

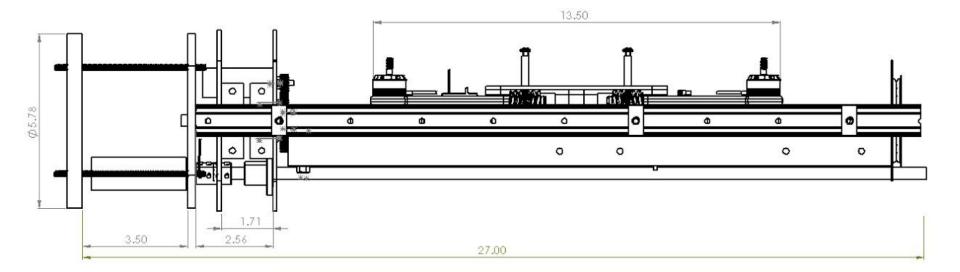

• DC motor rotates the drone platform until the drone is upright for take-off.



- 1 DC Gear Motor
- 2 Driving Gear
- 3 Driven Gear
- 4 Retaining Ring
- 5 Shaft
- 6 L piece connected to drone platform
- 7, 8 Shaft Collar
- 9 Bearing Block

Integration with Vehicle

- Bottom of the payload system is a wooden plate that is fixed to the payload coupler using epoxy.
- The top of the payload system is attached to the nose cone via a lazy susan bearing.



Payload Subsystem Dimensions

- Drone is approximately 13.5 in long.
- The payload airframe is approximately 27 in long.

Payload Ground Station Setup

- Drone Transmitter: RadioLink AT9S
 - o 2.4 GHz
 - Less than 100 mW
- DRES Transmitter: HC12 module connected to Arduino
 - o 433 MHz
 - o 100 mW
 - o 10 dBi high gain antenna
- FPV Receiver: Eachine RT01 connected to laptop
 - o 5.8 GHz
 - o 14 dBi high gain panel antenna

Launch Date

- Full scale launch date March 16
- A date late enough to ensure build and verify correct functionality will be selected.